Scoring Biological Integrity

the California Stream Condition Index (CSCI)

- Scoring Tool Enhancements
 - Update to O/E component
 - Integrating predictive MMI techniques
 - Our recommendations
- Setting Thresholds
- Statewide and Regional Extent Estimates
- Questions for the panel

*Andy Rehn, DFG-ABL

*Raphael Mazor, SCCWRP +DFG-ABL

Larry Brown, USGS

Jason May, USGS

David Herbst, SNARL

Peter Ode, DFG-WPCL/ABL

Ken Schiff, SCCWRP

David Gillett, SCCWRP

Eric Stein, SCCWRP

Betty Fetscher, SCCWRP

Kevin Lunde, SF Water Board

*** Scientific Review Panel

Qualities of a good scoring tool

Technical Qualities

- precise
- accurate
- responsive

Regulatory Qualities

- universally applicable
- easy to relate to ecological condition
- easy to compare to a standard

Two common approaches for quantifying biotic condition

Species loss indices (e.g., O/E indices)

Ecological structure indices (e.g., multi-metric indices including IBIs)

Scoring tools rely on reference sites to establish expected conditions

 485 reference sites used to develop scoring models

 Excellent coverage of CA's natural stream diversity

Multivariate view of natural diversity

Species Loss Index (O/E)

Compare number of **observed** ("O") taxa to number of **expected** ("E") taxa

- **Step 1.** Cluster reference sites based on biological similarity
- **Step 2.** Identify natural gradients that best explain clusters (=predictors)
- **Step 3.** Use predictor values at test sites to predict species expected to be observed

Index score is an estimate of taxonomic loss

O/E Update

- April index performed well
- Reference pool adjustments:
 - added sites to target under-represented gradients
 - dropped sites based on stakeholder feedback
- New discriminant functions model was not as precise as the April model
- Experimented with climatic sub-models, random forest techniques, predictor selection

O/E Update

Final Model (Random Forests, 10 clusters, 4 predictors):

- Average Monthly Temperature (2000-2009)
- Average Monthly Precipitation (2000-2009)
- Log Watershed Area
- Site Elevation

Performance was very similar to our April O/E index

Cluster biological similarity

(Bray-Curtis dissimilarity, flexible- β = -0.25, rare taxa removed if < 5% of sites)

dissim
Agglomerative Coefficient = 0.9

Multi-metric Indices (MMIs)

Species list is converted into metrics representing diversity, ecosystem function, and sensitivity to stress

<u>Taxon</u>	<u>Count</u>	# mayfly taxa
Mayfly species 1	43	
Mayfly species 2	12	
Mayfly species 3	2	# predator taxa
Beetle species 1	1	
Beetle species 2	1	
Midge genus 1	65	% sediment tolerant taxa
Midge species 1	3	
Midge species 2	10	
Midge genus 2	3	% herbivore taxa
Dragonfly species 1	2	
Stonefly species 1	1	
Stonefly species 2	14	% mayfly individuals
Worm species 1	9	, a maying maintagais
Worm species 2	2	

Why develop an MMI?

- Science panel recommended exploring MMI
- MMIs have useful qualities
 - Measure ecological attributes other than species loss
 - Very responsive to stress
 - May work well where species-specific predictions are tricky
- New techniques available (see Hawkins and Vander Laan presentation at 2011 CABW)
 - Adds site-specific adjustments to traditional MMIs

Building a predictive MMI (pMMI)

follows methods of Hawkins and Vander Laan

- **Step 1.** Calculate lots of metrics at reference and stressed sites
- *Step 2. Create models that adjust metric values to account for major natural sources of metric variation
- **Step 3.** Select metrics based on ability to discriminate reference from stressed sites
- **Step 4.** Score metrics (after Cao et al. 2007) and assemble into composite pMMI

Step 1. Calculate metrics at reference sites and stressed sites

Sample Information:

- 1520 sites had "adequate" samples (i.e., >450 bugs) = 2813 samples
- 514 are reference (same definition as O/E)
- 175 are highly stressed (84 Ag, 91 Urb)
- The rest are "test"

Calculate Metrics

- Used SWAMP's new bioassessment reporting module
- Subsample to 500 organisms, calculate at SAFIT Level 1 (midges to family)
- Reject samples <450 specimens

Use 80% for model development, 20% to validate

Identifying stressed sites

PCA with all GIS stressor variables (after removing effects latitude, longitude, and elevation) – stress cutoffs arbitrary

Metrics: the usual suspects

Class	Abundance-based	# Taxa	% Taxa
Taxonomic	% EPT	EPT taxa	% EPT taxa
	[not considered]	Coleoptera taxa	% Coleoptera taxa
	[not considered]	Diptera taxa	% Diptera taxa
	% Chironomidae	[NA]	[NA]
	[not considered]	Non-insect taxa	% Non-insect taxa
	Shannon Diversity	Taxonomic richness	
FFG	% Collectors	Collector taxa	% Collector taxa
	% Predators	Predator taxa	% Predator taxa
	% Scrapers	Scraper taxa	% Scraper taxa
	% Shredders	Shredder taxa	% Shredder taxa
Tolerance	% Intolerant	Intolerant taxa	% Intolerant taxa
	% Tolerant	Tolerant taxa	% Tolerant taxa
	Weighted tolerance value		

Step 2. Adjust metric values to account for influence of natural gradients

- Random forests models (1000 trees) allow us to predict sitespecific reference expectation for each metric
- Most influential gradients (all GIS-based):

•	Lat	itu	nd	e

- Longitude
- Elevation Range
- Site Elevation
- Precipitation
- Temperature
- log Watershed Area

- Soil Erodability
- Soil Bulk Density
- Soil Permeability
- Hydraulic Conductivity

- MgO_Mean
- Surfur_Mean
- SumAve_Phos
- CaO_Mean
- Mean Phosphorus
- Mean Nitrogen

If Rsq > 10%, use metric residuals (observed – predicted).
 Otherwise, use raw value

Step 3. Select most responsive metrics

- Select metrics with the best ability to discriminate reference from stressed (i.e., highest t-values – all > t=10)
- Avoid selecting redundant metrics
 - If R² with any previously selected metric > 0.5, do not select
 - Avoid "philosophical redundancy" (e.g., EPT taxa and % EPT)

Step 4. Score metrics and assemble into composite pMMI (follows Cao et al. 2007)

- Score metrics
 - Decreasing metrics:(Obs Min)/(Max– Min)
 - Increasing metrics:(Obs Max)/(Min– Max)
 - Max = 95th percentile of reference
 - Min = 5th percentile of stressed
- Sum 10 metrics and adjust scale to be equivalent to O/E (divide score by mean of reference)

Final Metrics

Metric	Mod v Null	% explained by RF model	[t]	Response
Collector taxa	Modeled	11	13.2	Decrease
Coleoptera taxa	Modeled	40	17.6	Decrease
Diptera taxa	Null	7	13.5	Decrease
Intolerant taxa	Modeled	53	32.2	Decrease
Predator taxa	Modeled	11	13.6	Decrease
Scraper taxa	Modeled	38	20.0	Decrease
Shredder taxa	Modeled	42	19.1	Decrease
% Non-Insect Taxa	Modeled	15	18.1	Increase
Shannon diversity	Modeled	16	10.7	Decrease
Tolerance value	Modeled	32	12.4	Increase

Evaluated multiple MMIs

All subsets of 30 metrics (~100,000 MMIs; 10 metrics max, no redundancy)

- Nearly all MMIs discriminate (reflects pre-screening of metrics?)
- More metrics = convergence to central tendency, better validation
- Thousands of other MMIs are probably just as good as ours

Comparing Performance of 3 Scoring Tools

- 1. Species Loss Index (O/E)
- Ecological Structure Index (pMMI)
- 3. Combined Index ("hybrid")

Created a common validation set for performance measures so we're comparing apples to apples

Measuring Performance

All evaluations used a common dataset

Class	Property	Measure	O/E	pMMI	Hybrid
Precision	Precision Variance of reference sites		0.19	0.15	0.14
Sensitivity/	Discrimination	t-value	9.5	17.6	15.3
Responsiveness	Variance explained by stress	Random forest model	25%	56%	49%
Accuracy/ Bias	Variance explained by natural gradients (ref sites)	Random forest model	-7 %	-9%	-8%
	Difference among PSA regions (ref sites)	ANOVA	1.0 (ns)	1.8 (ns)	1.2 (ns)
Replicability	Within-site variability	Mean within- site SD	0.10	0.10	0.08

Statewide Consistency

Distribution of reference scores by PSA region

Responsiveness to stress

pMMI and O/E have general agreement, but tell us somewhat different things

Hybrid more likely to find impairment than O/F in some cases

Hybrid less likely to find impairment than

Both pMMI and O/E have desirable qualities

- pMMI is precise and very responsive to stress (but it was designed to be)
- % species loss is an intuitive, meaningful measure of condition
- Both are accurate and applicable throughout state
- Potential for complementarity is great -- we explored a few options (see Science Panel)

Options for using 2 indices

- Hybrid
 - Equal
 - Unequal weight
- Agreement/ Disagreement
- Use one to verify the other

Multi-index Approaches

We recommend an equal-weight combined index

- Retains some of the better qualities of both indices, tempers weaknesses
- Retains the precision and high sensitivity of the MMI and the independence of the species loss data
- Can be disaggregated into component MMI and O/E
 - Don't lose information by combing
 - Reference expectations for all components are available
- No objective a priori reason to weight
- Implementation is easier with a single score

California Stream Condition Index (CSCI)

Part A: Ecological Structure Component (pMMI)

Part B: Taxonomic Loss Component (O/E)

CSCI is a simple average of the two scores

Options for setting thresholds

Statistical criteria

- Standard deviation
- %-ile of reference distribution

Ecological criteria

Acceptable species loss or change in community structure

We recommend statistically defined thresholds with a gray area

- Widely accepted practice with broad acceptance
- Ecological benchmarks are appealing biologically, but we have limited basis for setting these objectively
- Gray area is helpful way to express uncertainty in whether a sample reflects site condition

0.75 0.86

95% and 85% confidence that site is not equivalent to reference

0.73 0.77

95% confidence that the 95% threshold is where we think it is

0.59

Use within-site error rate to establish uncertainty around threshold

Different approaches for multiple samples (i.e., increasing certainty about site condition)

- Formal t-test vs. threshold
 - Pass if site mean > threshold; Fail if site mean < threshold
 - Gray: mean ~ threshold
 - Different responses given power of the test
 - Low power: More sampling
 - High power: Apply strict threshold comparison (no gray zone)
- What about Type II error?
 - Compare test distribution to reference distribution?
 - Set alpha at 0.10 or higher?
- Other ideas?

Extent of stream length by region

Questions about thresholds

Are there other options we should consider for guarding against Type I error (false positives)?

Can you suggest objective ways to protect against Type II error (false negatives)? Is there a way to incorporate a "safety factor"?

Do you favor one of the approaches for bounding a gray area?

Can you recommend strategies for dealing with multiple data points?

What's next? (Part I): Quantify applicability of tool

Goal: develop an objective means for determining whether a test site can be appropriately scored(i.e., "is a test site within the "experience" of the model)

- Develop a multivariate applicability test (e.g., Mahalanobis distance)?
- Univariate tests?
- Other ideas?
- How do we define a criterion of acceptance?
- Could be a good way to establish exceptions for truly unique environmental settings.

Multivariate view of natural diversity

What's next? (Part II) Automation and Documentation

Automate calculations

- Package GIS layers
- Make standard calculation and reporting tools available

Document, document

- Journal articles
- Website 101 and FAQ
- Website appendices

Questions for the panel (Part I)

- Are our scoring tools ready to support implementation?
- Are there other factors we should consider before finalizing our scoring tool recommendations?
 - Combination index versus other options
 - Inclusion of a grey area or not
 - Balancing Type I and II errors
- Gray area options
 - Should we explicitly deal with multiple data points in our gray area approach?

Questions for the panel (Part II)

- Recommendations for exploring and quantifying limits of tool?
- Recommendations for automation?
- Recommendations for documentation?

Sources of variation in index scores

1.0